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1 Introduction

The study of differential equations and variational problems with double phase operator is a
new and important topic, since it sheds light on multiple range of applications in the field
of mathematical physics such as elasticity theory, strongly anisotropic materials, Lavrentiev’s
phenomenon, etc. (see Zhikov (1986, 1995); Zhikov et al. (1994); Berdawood et al. (2020)).

In the present paper, we study the existence and multiplicity of solutions for the double
phase problem with variable exponents of the following form:

div
(
|∇u|p(x)−2∇u+ a(x)|∇u|q(x)−2∇u

)
= |u|p(x)−2u+ a(x)|u|q(x)−2u in Ω,(

|∇u|p(x)−2u+ a(x)|∇u|q(x)−2u
)
· ν = g(x, u) on ∂Ω,

(1)

where Ω ⊂ RN (N ≥ 2) is a bounded domain with Lipschitz boundary ∂Ω, 1 < p(x) < q(x) < N

and p(x)
q(x) < 1 + 1

N , a : Ω 7→ [0,+∞) is Lipschitz continuous, ν denotes the outer unit normal of
Ω at the point x ∈ ∂Ω and g : ∂Ω× R→ R satisfies Carathéodory condition.

The differential operator div
(
|∇u|p(x)−2∇u+ a(x)|∇u|q(x)−2∇u

)
is called the double phase

operator which is a natural generalization of the classical double phase operator when p and q
are constant functions div

(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
.

Multiple authors have concentrate on the study of double phase problems recently, and a
plethora of results have been obtained Nachaoui et al. (2021); Rasheed et al. (2021). Let us
recall some previous results that led us to the present paper.
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In Liu & Dai (2018), the authors considered the following problem in the particular case of
p(x) = p and q(x) = q{

−div
(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
= g(x, u) in Ω,

u = 0 on ∂Ω,

and they proved the existence and multiplicity of nontrivial solutions when the nonlinear term
g satisfying the (AR)− condition: i.e.,
(AR) there exist M > 0, θ > q such that for |t| ≥M and a.e. x ∈ Ω,

0 < θG(x, t) 6 tg(x, t).

In Yang et al. (2020), J. Yang, H. Chen and S. Liu have studied the following Dirichlet
boundary value problem−div

(
|∇u|p(x)−2∇u+ a(x)|∇u|q(x)−2∇u

)
= λg(x, u) in Ω,

u = 0 on ∂Ω.

Via a variational approach, the existence and multiplicity of solutions have been established,
where the nonlinear term g does not satisfy the (AR)− condition.

In the case when a ≡ 0, problem (1) becomes a p(x)-Laplacian Steklov problem of the form ∆p(x)u = |u|p(x)−2u in Ω,

|∇u|p(x)−2∂u

∂v
= g(x, u) on ∂Ω.

(2)

By using critical point theory, existence and multiplicity results of problem (2) are proved by
A. Ayoujil in Ayoujil (2014).

In a recent paper Cui & Sun (2021), in the case when p(x) = p and q(x) = q, Na Cui and
Hong-Rui Sun proved that the following problem{

−div
(
|∇u|p−2∇u+ a(x)|∇u|q−2∇u

)
= f(x, u)− |u|p−2u− a(x)|u|q−2u in Ω,(

|∇u|p−2u+ a(x)|∇u|q−2u
)
· ν = g(x, u) on ∂Ω,

has a nontrivial weak solution or infinitely many weak solutions with f and g are Carathéodory
functions satisfying suitable growth conditions, but do not satisfy the (AR)− condition. Their
approach was based on the critical point theory, namely, Mountain Pass Theorem, Fountain
Theorem and Clark’s Theorem.

Motivated by the above fact, we intend to establish the existence and multiplicity of non-
trivial solutions of problem (1), which has never been tackled before. The main novelty, as well
as the main difficulty of problem (1) comes from the fact that: on the one hand, the preblem
(1) is modeled in the working space W 1,H(Ω), not just the classical Sobolev space, which needs
more delicate and complicated estimates when we consider a nonlinear boundary condition. On
the other hand, the exponents p and q are nonconstant functions, then, problem (1) has a more
complicated structure.

Before stating our main results, we need to make the following assumptions of g:
(H1) There exists C > 0 such that

|g(x, t)| ≤ C(1 + |t|α(x)−1) for all (x, t) ∈ ∂Ω× R,

where α ∈ C+(∂Ω), 1 < q+ < α− ≤ α(x) ≤ α+ < p∗(x) and

p∗(x) :=

{
(N−1)p(x)
N−p(x) if p(x) < N

∞ if p(x) ≥ N.
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(H2) lim inf
|t|→∞

g(x,t)t

|t|q+
= +∞ uniformly for a.e. x ∈ ∂Ω,

where G(x, t) =
∫ t

0 g(x, s)ds.

(H3) lim
t→0

g(x,t)

|t|q+−1
= 0 uniformly for a.e. x ∈ ∂Ω .

(H4) There exists a constant µ ≥ 1, such that for all (s, t) ∈ [0, 1]× R, for each Fλ ∈ B and for
all θ ∈ [p−, q+], the inequality

µFλ(x, t) ≥ Fθ(x, st) holds for a.e. x ∈ ∂Ω,

where B is the class of functions defined by B =
{
Fλ | Fλ = g(x, t)t− λG(x, t), λ ∈ [p−, q+]

}
.

(H5) g(x,−t) = −g(x, t) for all (x, t) ∈ ∂Ω× R.

It is known that the main role of the famous Ambrosetti-Rabinowitz type condition is to
ensure the boundendess of the Palais-Smale type sequences of the corresponding functional.
However, there are several functions which are superlinear at infinity and at the origin but do
not satisfy the (AR)-condition. For example, the function

g(x, t) = q|t|q−2t ln(1 + |t|2)

does not satisfy the (AR)-condition, but it satisfies (H1)− (H5).

Remark 1. 1. The hypothesis (H4), which is important in obtaining a compactness condition
of Palais–Smale type, can be found in Zang (2008).

2. In general, the (AR)− condition does not imply (H4). Indeed, if p(x) = p and q(x) = q,
then, hypothesis (H4) becomes:
(H4) There exists a constant µ ≥ 1, such that for all (s, t) ∈ [0, 1] × R, for each Fλ ∈ B
and for all θ ∈ [p, q], the inequality

µFλ(x, t) ≥ Fθ(x, st) holds for a.e. x ∈ ∂Ω,

where B =
{
Fλ | Fλ = g(x, t)t− λG(x, t), λ ∈ [p, q]

}
.

Let us consider the following assumption:
(H
′
4) There exists a constant µ ≥ 1, such that for all (s, t) ∈ [0, 1]× R the inequality

µFq(x, t) ≥ Fq(x, st) holds for a.e. x ∈ ∂Ω.

From Zang (2008), the function g(x, t) = (q+2)|t|qt+(q+1)|t|q−1t sin2 1
t −|t|

q−1 sin 1
t cos 1

t

satisfies the (AR)− condition, but does not satisfy (H
′
4). Since (H4) implies (H

′
4), by

contraposition, we conclude that g does not satisfy (H4).

Now we are ready to state our main results.

Theorem 1. Assume (H1), (H2), (H3) and (H4). Then problem (1) has at least one nontrivial
solution in W 1,H(Ω).

Theorem 2. Assume (H1), (H2), (H4) and (H5). Then problem (1) possesses a sequence of
nontrivial weak solutions (un) in W 1,H(Ω) such that J(un)→ +∞ as n→ +∞.
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2 Preliminaries

To study double phase problems, we need some definitions and basic properties of W 1,H(Ω)
which are called Musielak–Orlicz–Sobolev space. For more details, see Benkirane & Sidi El
Vally (2014); Colasuonno & Squassina (2016); Fan (2012); Harjulehto & Hasto (2019); Musielak
(1983) and references therein.

Denote by N(Ω) the set of all generalized N -functions (N stands for nice). Let us denote by

H : Ω× [0,+∞[→ [0,+∞[

the functional defined as

H(x, t) = tp(x) + a(x)tq(x), for all (x, t) ∈ Ω× [0,+∞[ ,

where the weight function a(.) and the variable exponents p(x), q(x) satisfies the following
hypothesis:

H(a) : p, q ∈ C+(Ω) such that p(x) < q(x) < N for all x ∈ Ω and 0 ≤ a(.) ∈ L1(Ω). (3)

It is clear that H is a generalized N -function, locally integrable and

H(x, 2t) ≤ 2q
+H(x, t), for all (x, t) ∈ Ω× [0,+∞[ ,

which is called condition (∆2).
we designate the Musielak–Orlicz space by

LH(Ω) =
{
u : Ω→ R is measurable and

∫
Ω
H(x, |u|)dx < +∞

}
,

equipped with the so-called Luxemburg norm

|u|H = inf
{
λ > 0 :

∫
Ω
H(x, |u

λ
|)dx ≤ 1

}
.

The Musielak–Orlicz–Sobolev space W 1,H(Ω) is defined as

W 1,H(Ω) =
{
u ∈ LH(Ω) : |∇u| ∈ LH(Ω)

}
,

endowed with the norm
‖ u ‖1,H= |u|H + |∇u|H.

With such norms, LH(Ω) and W 1,H(Ω) are separable, uniformly convex, and reflexive Banach
space.

On LH(Ω), we consider the function ρH : LH(Ω)→ R defined by

ρH(u) =

∫
Ω

(
|u|p(x) + a(x)|u|q(x)

)
dx.

The relationship between ρH and |.|H is established by the next result.

Proposition 1. ( See Crespo-Blanco et al. (2021) ) For u ∈ LH(Ω), (un) ⊂ LH(Ω) and λ > 0,
we have

1. For u 6= 0, |u|H = λ⇐⇒ ρH(uλ) = 1;

2. |u|H < 1 (= 1, > 1)⇐⇒ ρH(u) < 1 (= 1, > 1) ;

3. |u|H > 1 =⇒ |u|p
−

H ≤ ρH(u) ≤ |u|q
+

H ;
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4. |u|H < 1 =⇒ |u|q
+

H ≤ ρH(u) ≤ |u|p
−

H ;

5. lim
n→+∞

|un|H = 0⇔ lim
n→+∞

ρH(un) = 0 and lim
n→+∞

|un|H = +∞⇔ lim
n→+∞

ρH(un) = +∞.

On W 1,H(Ω), we introduce the equivalent norm by

‖u‖ := inf

{
λ > 0 :

∫
Ω

[∣∣∣∣∇uλ
∣∣∣∣p(x)

+ a(x)

∣∣∣∣∇uλ
∣∣∣∣q(x)

+
∣∣∣u
λ

∣∣∣p(x)
+ a(x)

∣∣∣u
λ

∣∣∣q(x)
]

dx ≤ 1

}
Similar to the Proposition (1), we have

Proposition 2. ( See Crespo-Blanco et al. (2021) ) Let

ρ̂H(u) =

∫
Ω

(
|∇u|p(x) + a(x)|∇u|q(x))dx+

∫
Ω

(|u|p(x) + a(x)|u|q(x)

)
dx

. For u ∈W 1,H(Ω), (un) ⊂W 1,H(Ω) and λ > 0, we have

1. For u 6= 0, ‖u‖ = λ⇐⇒ ρ̂H(uλ) = 1;

2. ‖u‖ < 1 (= 1, > 1)⇐⇒ ρ̂H(u) < 1 (= 1, > 1) ;

3. ‖u‖ > 1 =⇒ ‖u‖p− ≤ ρ̂H(u) ≤ ‖u‖q+ ;

4. ‖u‖ < 1 =⇒ ‖u‖q+ ≤ ρ̂H(u) ≤ ‖u‖p− ;

5. lim
n→+∞

‖un‖ = 0⇔ lim
n→+∞

ρ̂H(un) = 0 and lim
n→+∞

‖un‖H = +∞⇔ lim
n→+∞

ρ̂H(un) = +∞.

We define the weighted space

L
q(x)
µ(x)(∂Ω) =

{
u : ∂Ω→ R is measurable and

∫
∂Ω
µ(x)|u|q(x) dσ < +∞

}
with the seminorm

|u|q(x),µ(x) = inf
{
λ > 0 :

∫
∂Ω
µ(x)

(
|u|
λ

)q(x)

dσ ≤ 1
}
.

In particular, when µ ≡ 1 on ∂Ω, the space L
q(x)
µ(x)(∂Ω) becomes a variable exponent Lebesgue

space Lq(x)(∂Ω) with |u|q(x),µ(x) = |u|q(x),∂Ω.

Recall the following embedding results.

Proposition 3. (See Crespo-Blanco et al. (2021) ) Let hypothesis (3) be satisfied. Then the
following embeddings hold:

1. If p ∈ C+(Ω)∩W 1,γ(Ω) for some γ ≥ N. Then, there is a continuous embedding W 1,H(Ω) ↪→
Lr(x)(∂Ω) for r ∈ C(∂Ω) with 1 ≤ r(x) ≤ p∗(x) for all x ∈ ∂Ω .

2. There is a compact embedding W 1,H(Ω) ↪→ Lr(x)(∂Ω) for r ∈ C(∂Ω) with 1 ≤ r(x) < p∗(x)
for all x ∈ ∂Ω.

Let A : W 1,H(Ω)→
(
W 1,H(Ω)

)∗
be defined by

〈A(u), v〉 =

∫
Ω

(
|∇u|p(x)−2 + a(x)|∇u|q(x)−2

)
∇u.∇v dx+

∫
Ω

(
|u|p(x)−2 + a(x)|u|q(x)−2

)
u.v dx

for all u, v ∈ W 1,H(Ω), where
(
W 1,H(Ω)

)∗
denotes the dual space of W 1,H(Ω) and 〈., .〉 stands

for the duality pairing between W 1,H(Ω) and
(
W 1,H(Ω)

)∗
.
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Proposition 4. (See Crespo-Blanco et al. (2021) ) Let hypothesis (3) be satisfied.

1. The operator A : W 1,H(Ω)→
(
W 1,H(Ω)

)∗
is continuous, bounded and strictly monotone.

2. The operator A : W 1,H(Ω) →
(
W 1,H(Ω)

)∗
satisfies the (S+)-property, i.e., if un ⇀ u in

W 1,H(Ω) and lim
n→+∞

〈J(un)− J(u), un − u〉 ≤ 0, then un → u in W 1,H(Ω).

3. The operator A : W 1,H(Ω)→
(
W 1,H(Ω)

)∗
is coercive and a homeomorphism.

From now on, we denote by E = W 1,H(Ω) and E∗ =
(
W 1,H(Ω)

)∗
the dual space.

The problem (1) has a variational structure, its associated energy functional J : E → R is
defined as follows

J(u) = I(u)− ϕ(u),

where

I(u) =

∫
Ω

(
1

p(x)
|∇u|p(x) +

a(x)

q(x)
|∇u|q(x)

)
dx+

∫
Ω

(
1

p(x)
|u|p(x) +

a(x)

q(x)
|u|q(x)

)
dx,

and

ϕ(u) =

∫
∂Ω
G(x, u) dσ,

where dσ is the measure on the boundary.
Then, it follows from the hypothesis (H1) that the functional J ∈ C1(E,R), and its Fréchet
derivative is

〈J ′(u), v〉 =

∫
Ω

(
|∇u|p(x)−2 + a(x)|∇u|q(x)−2

)
∇u.∇v dx+

∫
Ω

(
|u|p(x)−2 + a(x)|u|q(x)−2

)
u.v dx−

−
∫
∂Ω
g(x, u)v dσ,

for any u, v ∈ E.

Definition 1. Let u ∈ E. We say that u is a weak solution of the problem (1) if∫
Ω

(
|∇u|p(x)−2 + a(x)|∇u|q(x)−2

)
∇u.∇v dx+

∫
Ω

(
|u|p(x)−2 + a(x)|u|q(x)−2

)
u.v dx−

−
∫
∂Ω
g(x, u)v dσ = 0,

for all v ∈ E.

Definition 2. (See Cerami (1978)) Let (X, ‖.‖) be a real Banach space and φ ∈ C1(X,R).
Given c ∈ R, we say that φ satisfies the Cerami condition ( we denote (Cc)− condition) if
a) any bounded sequence (un) ⊂ X such that φ(un) → c and φ′(un) → 0 has a convergent
subsequence;
b) there exist constants α, β, r > 0 such that

‖φ′(u)‖ ‖u‖ ≥ β, ∀u ∈ φ−1 ([c− α, c+ α]) with ‖u‖ ≥ r.

If this condition is satisfied at every level c ∈ R, then, we say that J satisfies (C)-condition.

Now, we present the following theorems which will play a fundamental role in the proof of
main Theorems.
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Theorem 3. ( See Bartolo et al. (1983)) Let X be a real Banach space, let φ : X → R be a
functional of class C1(X,R) that satisfies (C)-condition, φ(0) = 0 and the following conditions
hold:

1. There exist positive constant ρ and α such that φ(u) ≥ α for any u ∈ X with ‖u‖ = ρ.

2. There exists a function e ∈ X such that ‖e‖ > ρ and φ(e) ≤ 0.

Then, the functional φ has a critical value c ≥ α, that is, there exists u ∈ X such that φ(u) = c
and φ′(u) = 0 in X∗.

Let X be a real, reflexive, and Banach space, it is known Zhao (1991) that for a separable
and reflexive Banach space there exist {ej}j∈N ⊂ X and {e∗j}j∈N ⊂ X∗ such that

X = span{ej : j = 1, 2, ...}, X∗ = span{e∗j : j = 1, 2, ...},

and 〈e∗i , ej〉 = 1 if i = j, 〈e∗i , ej〉 = 0 if i 6= j.

We denote Xj = span{ej},Yk =
⊕k

j=1Xj and Zk =
⊕+∞

j=kXj .

Theorem 4. (See Zou (2001) ) Assume that X is a Banach space, and let φ : X → R be an
even functional of class C1(X,R) and satisfies (C)− condition . For every k ∈ N, there exists
γk > ηk > 0 such that
(A1) bk := inf{φ(u) : u ∈ Zk, ‖u‖ = ηk} → +∞ as k → +∞;
(A2) ck := max{φ(u) : u ∈ Yk, ‖u‖ = γk} ≤ 0.
Then, φ has a sequence of critical values tending to +∞.

3 Compactness condition for the energy functional
corresponding to problem (1)

In this section, we present the following compactness result which will play a crucial role in the
proof of main Theorems.

Lemma 1. Assume that (H1), (H2) and (H4) hold. Then, J satisfies the (C)-condition.

Proof. Firstly, we show that J satisfies the first assertion of (C)−condition. Let (un) ⊂ E be a
bounded sequence such that

J(un)→ c, c ∈ R and J ′(un)→ 0.

As E is reflexive, for a subsequence still denoted by (un), we have un ⇀ u in E. By (H1),
using arguments analogous to those in Fan & Zhang (2003), it can be seen that the functional
ϕ : E → E∗ is completely continuous, then ϕ(un)→ ϕ(u). Since J ′(un) = I ′(un)− ϕ′(un)→ 0,
we get that I ′(un) → ϕ′(u). Using the fact that I ′ ≡ A is a homeomorphism in view of
Proposition (4), then we obtain that un → u in E.

Now we check that J satisfies the second assertion of (C)-condition. To this end, arguing by
contradiction, it is assumed that there exist c ∈ R and (un) ⊂ E satisfying

J(un)→ c, ‖un‖ → +∞ and ‖J ′(un)‖ ‖un‖ → 0. (4)

We can suppose that ‖un‖ > 1, for n ∈ N, then we obtain

c = lim
n→+∞

[
J(un)− 1

δn
〈J ′(un), un〉

]
= lim

n→+∞

[
1

δn

∫
∂Ω
g(x, un)undσ −

∫
∂Ω
G(x, un)dσ

]
,

(5)
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where δn = ρ̂H(un)
I(un) .

Let a sequence (υn) be defined by υn = un
‖un‖ , then, ‖υn‖ = 1. Since E is reflexive and (υn) ⊂ E

is a bounded sequence, we assume that for some subsequence, still denoted by itself, there is
υ ∈ E such that

υn ⇀ υ in E,

υn → υ in Lα(x)(∂Ω),

υn → υ in Lq
+

(∂Ω),

υ(x)→ υ(x) a.e. x ∈ ∂Ω,

(6)

where α comes from (H1).
Next, we need to distinguish two cases: v = 0 and v 6= 0.
Case1. If υ = 0, according to the proof of Lemma 3.6 in Jeanjean (1999), we can define a
sequence (tn) ⊂ R such that

J(tnun) = max
t∈[0,1]

J(tun). (7)

Fix L > 0 such that L > 1
2p+

. Let υn = (2q+L)
1
p− υn. By (6), it is seen that

υn → 0 in Lα(x)(∂Ω).

Using (H1), it follows that

|G(x, t)| ≤ C(|t|+ |t|α(x)).

As the function t 7→ G(., t) is continuous, we obtain

G(., υn)→ 0, as n→ +∞ in L1(∂Ω).

Therefore,

lim
n→+∞

∫
∂Ω
G(x, υn)dσ = 0. (8)

Because ‖un‖ → +∞, it is obvious that (2p+L)
1
q−

‖un‖ ∈ ]0, 1[. As p− ≤ p(x) < q(x) ≤ q+, then, for
n large enough, we obtain

J(tnun) ≥ J(υn)

=

∫
Ω

(
1

p(x)
|∇υn|p(x) +

a(x)

q(x)
|∇υn|q(x)

)
dx+

∫
Ω

(
1

p(x)
|υn|p(x) +

a(x)

q(x)
|υn|q(x)

)
dx−

∫
∂Ω

G(x, υn) dσ

≥ 2q+L

q+

∫
Ω

(
|∇υn|p(x) + a(x)|∇υn|q(x)

)
dx+

2q+L

q+

∫
Ω

(
|υn|p(x) + a(x)|υn|q(x)

)
dx−

∫
∂Ω

G(x, υn) dσ

= 2Lρ̂H(υn)−
∫
∂Ω

G(x, υn) dσ

≥ 2L−
∫
∂Ω

G(x, υn) dσ ≥ 2L,

(9)

that is,

lim
n→+∞

J(tnun) = +∞. (10)

Since J(0) = 0 and lim
n→+∞

J(un) = c, then, tn ∈ ]0, 1[ and

ρ̂H(tnun)−
∫
∂Ω
g(x, tnun)tnun dσ = 〈J ′(tnun), tnun〉 = tn

d

dt

∣∣∣∣
t=tn

J (tun) = 0, (11)
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when n is large enough.
Therefore, combining (10) and (11), we get∫

∂Ω

(
1

δtn
g(x, tnun)tnun −G(x, tnun)

)
dσ =

1

δtn
ρ̂H(tnun)−

∫
∂Ω
G(x, tnun) dσ

= J(tnun) −→
n→+∞

+∞,
(12)

with δtn = ρ̂H(tnun)
I(tnun) .

By simple calculation, we have δn, δtn ∈ [p−, q+]. Then, Fδn ,Fδtn ∈ B. Accordingly, from
(H4), we have∫

∂Ω

(
1

δn
g(x, un)un −G(x, un)

)
dσ =

1

δn

∫
∂Ω
Fδn(x, un) dσ

≥ 1

µδn

∫
∂Ω
Fδtn (x, tnun) dσ

=
δtn
µδn

∫
∂Ω

(
1

δtn
g(x, tnun)tnun −G(x, tnun)

)
dσ.

Since infn
δtn
µδn

> 0, by (12), we can deduce that∫
∂Ω

(
1

δn
g(x, un)un −G(x, un)

)
dσ → +∞, as n→ +∞,

which is contradiction to (5).
Case2. If υ 6= 0, by (4) and Proposition (2), we write

ρ̂H(un)−
∫
∂Ω
g(x, un)un dσ = 〈J ′(un), un〉 = ◦(1)‖un‖, (13)

then

1− ◦(1) =

∫
∂Ω

g(x, un)un
ρ̂H(un)

dσ

≥
∫
∂Ω

g(x, un)un

‖un‖q+
dσ

=

∫
∂Ω

g(x, un)un

|un|q+
|υn|q

+
dσ.

(14)

Let’s define the set V0 = {x ∈ ∂Ω : υ(x) 6= 0}. If x ∈ V0, then

lim
n→+∞

υn(x) = lim
n→+∞

un(x)

‖un‖
= υ(x) 6= 0.

Therefore, |un(x)| = |υn(x)| ‖un‖ −→
n→+∞

+∞ a.e. x ∈ ∂Ω.

Hence, using (H2), we see
g(x, un)un

|un|q+
|υn|q

+ −→
n→+∞

+∞.

As |V0| > 0, by Fatou’s lemma, we conclude∫
V0

g(x, un)un

|un|q+
|υn|q

+
dσ −→

n→+∞
+∞. (15)
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From (H1) and (H2), it follows that there exists a real number D such that g(x,t)t

tq+
≥ D for any

t ∈ R and a.e. x ∈ ∂Ω. Moreover, we have∫
∂Ω\V0

|υn|q
+
dσ −→

n→+∞
0.

Then, there exists N > −∞ such that∫
∂Ω\V0

g(x, un)un

|un|q+
|υn|q

+
dσ ≥ D

∫
∂Ω\V0

|υn|q
+
dσ ≥ N > −∞. (16)

Combining (15) and (16) gives∫
∂Ω

g(x, un)un

|un|q+
|υn|q

+
dσ =

∫
V0

g(x, un)un

|un|q+
|υn|q

+
dσ+

∫
∂Ω\V0

g(x, un)un

|un|q+
|υn|q

+
dσ → +∞, as n→ +∞.

This leads to a contradiction with (14). Consequently, the functional J satisfies the second
assertion of (C)− condition. The proof is complete.

4 Proofs of main results

The main aim of this section is to prove our main results.

4.1 Proof of Theorem (1)

The proof is based on the Mountain Pass Theorem (3). Let X = E and φ ≡ J . Obviously, by
Lemma (1), J satisfies the (C)−condition. Firstly, we will show that J possesses the mountain
pass geometry.

Lemma 2. There exist η, ρ > 0 such that

I(u) ≥ η, for ‖u‖ = ρ. (17)

Proof. Let ε > 0. By assumptions (H1) and (H3), it follows that

|G(x, t)| ≤ ε|t|q+ + Cε|t|α(x), for all (x, t) ∈ ∂Ω× R.

Then, for ‖u‖ sufficiently small, we have

J(u) =

∫
Ω

(
1

p(x)
|∇u|p(x) +

a(x)

q(x)
|∇u|q(x)

)
dx+

∫
Ω

(
1

p(x)
|u|p(x) +

a(x)

q(x)
|u|q(x)

)
dx−

∫
∂Ω
G(x, u) dσ

≥ 1

q+
‖u‖q+ − ε

∫
∂Ω
|u|q+ dσ − Cε

∫
∂Ω
|u|α(x) dσ.

Since 1 < q+ < α− ≤ α(x) ≤ α+ < p∗(x) for all x ∈ ∂Ω, according to the Proposition (3), we
have

E ↪→ Lq
+

(∂Ω) and E ↪→ Lα(x)(∂Ω),

with a compact embeddings. Thus, there exist c1, c2 > 0 such that

|u|q+,∂Ω ≤ c1‖u‖ and |u|α(x),∂Ω ≤ c2‖u‖, for all u ∈ E. (18)

Consequently, we have

J(u) ≥ 1

q+
‖u‖q+ − εcq

+

1 ‖u‖
q+ − Cεcα−2 ‖u‖

α− . (19)
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We can choose ε such that εcq
+

1 < 1
2q+

. Therefore, as α− > q+, we obtain

J(u) ≥ ‖u‖q+
(

1

2q+
− Cεcα

−
2 ‖u‖α

−−q+
)

= ρq
+

(
1

2q+
− Cεcα

−
2 ρα

−−q+
)

= η > 0.

Lemma 3. There exists e ∈ E with ‖e‖ > ρ such that J(e) < 0.

Proof. Let u ∈ E \ {0}. By (H2), we can choose a constant A and CA such that

A >
ρ̂H(u)

p−
∫
∂Ω |u|q

+dx
,

so that

G(x, t) ≥ A|t|q+ , for all |t| > CA and uniformaly in ∂Ω. (20)

Let t > 1 be large enough, we have

J(tu) =

∫
Ω

(
1

p(x)
|∇tu|p(x) +

a(x)

q(x)
|∇tu|q(x)

)
dx+

∫
Ω

(
1

p(x)
|tu|p(x) +

a(x)

q(x)
|tu|q(x)

)
dx−

∫
∂Ω
G(x, tu) dσ

≤ tq
+

p−

[ ∫
Ω

(
|∇u|p(x) + a(x)|∇u|q(x)

)
dx+

∫
Ω

(
|u|p(x) + a(x)|u|q(x)

)
dx

]
−
∫
{|tu|≤CA

G(x, tu) dσ

−
∫
{|tu|>CA

G(x, tu) dσ.

Since G(x, .) is continuous in t ∈ [−CA, CA], there exists a positive constant C0 such that

|G(x, s)| ≤ C0, for all (x, s) ∈ ∂Ω× [−CA, CA] . (21)

Then, using (20) and (21), it follows that

J(tu) ≤ tq
+

p−
ρ̂H(u)−Atq+

∫
∂Ω
|u|q+ dσ + C0|∂Ω|

= tq
+

(
ρ̂H(u)

p−
−A

∫
∂Ω
|u|q+ dσ

)
+ C0|∂Ω|

−→ −∞, as t→ +∞.

Accordingly, there exist t1 > 1 and e = t1u ∈ E such that ‖e‖ > ρ and J(e) < 0.

Finally, by lemmas (2) - (3), and the fact that J(0) = 0, J satisfies the Mountain Pass
Theorem. Therefore, the problem (1) has a nontrivial weak solution in W 1,H(Ω).

4.2 Proof of Theorem (2)

Let X = E and φ ≡ J . Evidently, by (H5) and Lemma (1), J is an even functional and satisfies
the (C)− condition. To apply the Fountain Theorem (4), it suffices to show that there exist
γk > ηk > 0 such that
(A1) bk := inf{J(u) : u ∈ Zk, ‖u‖ = ηk} → +∞ as k → +∞;
(A2) ck := max{J(u) : u ∈ Yk, ‖u‖ = γk} ≤ 0.

We first give the following lemmas that will be used later.
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Lemma 4. If β ∈ C+(∂Ω), β(x) < p∗(x) for every x ∈ ∂Ω. Put

dk = sup
‖u‖=1,u∈Zk

|u|β(x),∂Ω,

then lim
k→+∞

dk = 0.

Proof. Suppose by contradiction that there exist ε > 0, k1 > 0 and (uk) ⊂ Zk such that

‖uk‖ = 1 and |uk|β(x),∂Ω ≥ ε,

for every k ≥ k1. Since (uk) is bounded in E, then, there exists u ∈ E such that

uk ⇀
k→∞

u in E and 〈e∗i , u〉 = lim
k→∞
〈e∗i , uk〉 = 0,

for i = 1, 2...
Thus, u = 0. However, we obtain:

ε ≤ lim
k→∞
|uk|β(x),∂Ω = |u|β(x),∂Ω = 0,

which is a contradiction.

Lemma 5. For all % ∈ C+(∂Ω) and u ∈ L%(x)(∂Ω), there is ζ ∈ ∂Ω such that∫
∂Ω
|u|%(x) dσ = |u|%(ζ)

%(x),∂Ω.

Verification of (A1) . Let u ∈ Zk with ‖u‖ = Rk = (c6α
−dα

+

k )
1

p−−α+ > 1. By (H1) and
Lemma (5), we get

J(u) =

∫
Ω

(
1

p(x)
|∇u|p(x) +

a(x)

q(x)
|∇u|q(x)

)
dx+

∫
Ω

(
1

p(x)
|u|p(x) +

a(x)

q(x)
|u|q(x)

)
dx−

∫
∂Ω
G(x, u) dσ

≥ 1

q+
ρ̂H(u)− c3

∫
∂Ω
|u| dσ − c4

∫
∂Ω
|u|α(x) dσ

≥ 1

q+
‖u‖p− − c5‖u‖ − c6|u|α(ξ)

α(x),∂Ω where ξ ∈ ∂Ω

≥

{
1
q+
‖u‖p− − c5‖u‖ − c6, if |u|α(x),∂Ω ≤ 1

1
q+
‖u‖p− − c5‖u‖ − c6 (αk‖u‖)α

+

, if |u|α(x) > 1

≥ 1

q+
‖u‖p− − c5‖u‖ − c6 (dk‖u‖)α

+

− c6,

where ci, i = 3, 4, 5, 6 are positive constants.
Because q+ < α− and dk → 0 as k → +∞, then,

J(u) ≥ (
1

q+
− 1

α−
)Rp

−

k − c5Rk − c6 → +∞ as k → +∞,

which implies (A1).

Verification of (A2) . Because Yk =
⊕k

j=1Ej is finite-dimensional space, all norms are
equivalent. Then there exists Nk > 0, for all u ∈ Yk with ‖u‖ is large enough, we obtain

I(u) ≤ 1

p−
ρ̂H(u) ≤ 1

p−
‖u‖q+ ≤ Nk|u|q

+

q+
. (22)
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Moreover, it follows from (H2) that there exist Hk > 0 such that for every |t| ≥ Hk, we get

G(x, t) ≥ 2Nk|t|q
+

for a.e. x ∈ ∂Ω.

Therefore, for every (x, t) ∈ ∂Ω× R, we obtain

G(x, t) ≥ 2Nk|t|q
+ −Gk,

where Gk = max
|t|≤Hk

G(x, t).

Combining this with (22), for u ∈ Yk such that ‖u‖ = γk > ηk, we find

J(u) = I(u)−
∫
∂Ω
G(x, u) dσ

≤ Nk|u|q
+

q+
− 2Nk|u|q

+

q+
+Gk|∂Ω|

≤ −Nk|u|q
+

q+
+Gk|∂Ω|

≤ − 1

p−
‖u‖q+ +Gk|∂Ω|.

Consequently, from the above inequalities, for γk large enough (γk > ηk), we obtain

ck := max{J(u) : u ∈ Yk, ‖u‖ = γk} ≤ 0,

which implies (A2).

Therefore, the proof is completed by applying the Fountain Theorem.
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